ããŒã¿åæ/ãšã³ãžãã¢ãªã³ã°ãŸãšã
ããŒã¿åæ, ããŒã¿ãšã³ãžãã¢ãªã³ã°.
ðããŒã¿ãµã€ãšã³ã¹ãããå®éã®ããŒã¿ãå ã«å®è·µçãªè©±é¡.
倧ããªãããã¯ã§ããããããªåéã§ç»å Žããã®ã§å ±éã®ç¥èããããŠãã.
ããŒã¿ãã³ãŒãå«ãããããžã§ã¯ã管çã¯ðããŒã¿åæãããžã§ã¯ã管çãž.
䞻芳çãªæèŠã¯ð³ããŒã¿åæã§ãŸãšãã.
ããŒã¿åæã®ç®ç
- åé¡ãçºèŠãã.
- å¿ç蚺æãã¹ããªã©ããã®é¡.
- çžæã説åŸãã.
- èªåãçŽåŸããã.
ããŒã¿åæã®çš®é¡
æ¢çŽ¢çããŒã¿è§£æ
ðæ¢çŽ¢çããŒã¿è§£æ(EDA)
Predictive Analysis: äºæž¬è§£æ
ããåºæ¥äºãäºæž¬ããããã«ããŒã¿ãå©çšããããšãç®ç.
確蚌çããŒã¿è§£æ, 仮説æ€å®ãšã.
Causal Data Analysis: å æåæ
ããå€æ°ãå€åãããšã, å¥ã®å€æ°ã«ãªã«ãèµ·ããããæãã«ããããšãç®ç.
Mechanistic Data Analysis: æ©æ§ç解æ
ããåºæ¥äºã®å€æ°ã«æ±ºå®çãªå€åãããããå¥ã®åºæ¥äºã®å€æ°ãç解ããããšãç®ç.
ðå®éåæ
æ°ãæ±ãã®ãå®éåæ.
æ¯èŒã»å·®ç°ã«ããåæ
2ã€ã3ã€ã®å¯Ÿè±¡ãæ¯èŒããŠ, éããã©ãã«ããã®ãã«æ³šç®ãã.
æç³»ååæ
æéã«ããå€åã«çç®ãã.
ååžã«ããåæ
çžé¢é¢ä¿ãç¹ç°ç¹ãèŠã€ããåæ. æ£åžå³ãã€ããããšãããã.
å æ°å解ã«ããåæ
ðããžãã¯ããªãŒã§å±éããŠæ°å€ã§è£ä»ãããŠãã.
ðå®æ§åæ
çŽæçãªåé¡ãå®æ§åæ.
ããŒã¿ãã€ãã³ã°
倧éã®ããŒã¿ããç¥èãåãåºãæè¡.
解ææ¹æ³æŠèŠ
- é »åºãã¿ãŒã³æœåº
ããŒã¿éåã®äžãã, é«é »åºŠã§çºçããç¹åŸŽçãªãã¿ãŒã³ãèŠã€ãã.
- ã¯ã©ã¹åé¡
ã¯ã©ã¹åé¡ã¯äžããããããŒã¿ã«å¯Ÿå¿ããã«ããŽãªãäºæž¬ããåé¡.
- ååž°åæ
äžããããããŒã¿ã«å¯Ÿå¿ããå®æ°å€ãäºæž¬ããåé¡
- ã¯ã©ã¹ã¿ãªã³ã°
ããŒã¿ã®éåãã¯ã©ã¹ã¿ãšåŒã¶ã°ã«ãŒãã«åãã. ã¯ã©ã¹ã¿ãšã¯, åãã¯ã©ã¹ã¿ã®ããŒã¿ãªãã°äºãã«äŒŒãŠããŠ, éãã¯ã©ã¹ã¿ãªãã°äŒŒãŠããªããããªããŒã¿ã®éãŸã.
ã¯ã©ã¹ã¿åæ
éå±€çã¯ã©ã¹ã¿åæ
äºã€ã®è¿ããã®ãæ¢ã.
-
è¿ãã®å®çŸ©
- ãŠãŒã¯ãªããè·é¢
- çžé¢ä¿æ°
- ãã³ããã¿ã³è·é¢
ééå±€ã¯ã©ã¹ã¿åæ
-
K-means cluster åæ
ã¯ã©ã¹ã¿ã®å¹³åãçšã, äžããããã¯ã©ã¹ã¿æ° k åã«åé¡ãã
å€å€é解æ
bivariate data: äºå€éããŒã¿
Contingency Tables: åå²è¡š
2 ã€ä»¥äžã®å€æ° (å矩尺床ãäžè¬ç) ã®éã®é¢ä¿ãèšé²ãåæããããã®ãã®.
A contingency table or two-way table is used to organize data from multiple categories of two variables so that various assessments may be made.
ããŒã¿åæTopics
ðãŸã仮説ãããããããŠåæ
æã倧äºãªããšã¯, ð仮説ãç«ãŠãŠããããåæãããããš.
åé¡ãæŽçããããã«éé²ã«åæããã®ã§ã¯ãªã. ãã®äž»åŒµã®çç±ã¯, ð仮説æè, ã€ãŸãéããããªãœãŒã¹ã®äžã§æçã§è§£èŠæ¥µããããšãç®çãšãã.
仮説ããªãã³ã ããããããŒã¿ããªãã³ãæãç«ã€ â Data
仮説ããªãç 究ãããŠå€§ããçºèŠããªãã£ããšããç©çåŠç 究ã®äºäŸ.