ð§ è³æ³¢/EEG x ðä¿¡å·åŠç
è³æ³¢åæã¯ãŒã¯ãããŒ
The typical M/EEG workflow â MNE 1.10.2 documentation
ååŠç
ãªãµã³ããªã³ã°/垯åã»ããã/ããŒã¹ã©ã€ã³
ãã£ã«ã¿ãªã³ã°
ãã³ããã¹ãã£ã«ã¿
è³æ³¢ã§æçšãªç¯å²ãæ®ã. 0.5â45 Hz
ããããã£ã«ã¿
黿ºãã€ãºãé€å». 50/60 Hz
ãªãµã³ããªã³ã°
åŠçã軜ãããïŒäŸïŒ256Hz â 128HzïŒ
ã¢ãŒããã¡ã¯ãé€å»
ã¢ãŒããã¡ã¯ã=è³æ³¢ä»¥å€ã®ä¿¡å·
- ç¬ãã»çé»ïŒé¡ãéŠã®çèïŒç±æ¥ã®ãã€ãº
- ICA (ç¬ç«æååæ) ãªã©ã§åé¢å¯èœ
- museã ãš4Hzã®åæ°ã§ãžããªPowerã®å¢å ããã. 綺éºãªïŒã®åæ°ã¯çã.
EOGã¢ãŒããã¡ã¯ã
è³æ³¢ïŒEEGïŒæž¬å®æãªã©ã«ãçŒçã®åãïŒç¬ããèŠç·ç§»åïŒã«ãã£ãŠæ¬æ¥ã®è³æ³¢ä¿¡å·ã«æ··å ¥ãããåœã®é»æ°ä¿¡å·.
-
éçŒäžã§ãçŒçéåã ãã§EEGã«å€§ããªåœ±é¿.
-
çŒçãåããšããã®å極åãå転ããé ç®äžã®é»äœååžãå€å.
-
çŒçã«è¿ãåæ¹ã§ããã€ãã圱é¿.
çŒçã¯ã黿°ç忥µåã
-
è§èïŒåé¢ïŒ: æ£é»äœ
-
ç¶²èïŒåŸé¢ïŒ: è² é»äœ
-
é»äœå·®: çŽ0.4ã1.0 mV
Refs
- ãè³æ³¢ã¯äžåŠçããªãæ¹ãããããšããè¡æã®è«æãåºãŠããä»¶ïœderiba | è³ãšåŠç¿, éå°ã«ã¯ããªããŠããçšåºŠã§åãåã.
äžåŠç
ããŒã¿åéãšè§£æã®éã§è¡ã調æŽ
ãšãããã³ã°
äºè±¡ãäžå¿ãšããæéçªãèšå®ããããšã§ããã¿ã¹ã¯é¢é£ã®è³æ³¢ã®å€åã®åæãç°¡åã«ãã.
ç¹åŸŽéæœåº
- STFT/ãŠã§ãŒãã¬ãã
- 1/f/ïŒlog-logã§PSDãç·åœ¢ååž°ïŒ
- å€ãå€åãããšãè³ã®æŽ»åã¢ãŒãããå€ãã£ãŠããå¯èœæ§
- ãšã³ããããŒïŒä¿¡å·ã®è€éãïŒ
- ãµã³ãã«ãšã³ããããŒãªã©ç°¡æã«èšç®å¯èœ
- äºè±¡é¢é£é»äœ (ERP) | EEG-Analysis
4æ¬¡å æ å ±é
- æé
- ãã¯ãŒ
- åšæ³¢æ°
- äœçž
空éãã£ã«ã¿
é ç®äžã®é»æ¥µã§æž¬ãããé»äœããè³ã®ã©ã®éšäœç±æ¥ã®æŽ»åãªã®ããã§ããã ã屿çã«æãã.
- ãã€ããŒã©å°åºïŒå·®åïŒ
- CARïŒCommon Average ReferenceïŒ
- å黿¥µ â å šé»æ¥µå¹³å
- é åå¥å¹³ååç §ïŒRegional average referenceïŒ
- ã©ããã©ã·ã¢ã³å°åº
- Museã§ã¯ç¡ç.
è§£æææ³
æç³»åè§£æïŒTime-domainïŒ
ãç¬éçãªè³ã®åå¿ãããçæ³å°å ¥æã®å€åããåããã
- çæ³¢åœ¢ããããïŒçæ³äžã«Î±æ³¢ãå®å®ããŠåºãŠããããªã©ã®çŽæç確èª
- ERPïŒäºè±¡é¢é£é»äœïŒïŒç¹å®åºæ¿ïŒéã®é³ãã¬ã€ãé³å£°ïŒã«åæããå¿çãèŠã
- STFTïŒçæéããŒãªãšå€æïŒ
- ãŠã§ãŒãã¬ãã倿
æéåšæ³¢æ°è§£æ(time/freq)
ãçæ³ã®ããã»ã¹å šäœã§ã®ãã€ããã¯ã¹ããåãããçæ³ã®ãå°å ¥âæ·±ãŸãâçµäºãã§åšæ³¢æ°ãã©ã³ã¹ãã©ãå€åããããèŠã
ãã«ãã«ã倿
ãã«ãã«ã倿ã§ç¬ææ¯å¹ ãæšå®. ãããã¯ãä»ãã®ç¬éãFmΞãã©ãã ã匷ãããã衚ãå€.
ãã«ãã«ã倿 | EEG-Analysis
æç³»åPSDåæ
ãã³ããã¯ãŒã®æšç§». ðPSDè§£æ
ã¹ãã¯ããã°ã©ã
æé vs åšæ³¢æ°ã®åŒ·åºŠã®ããŒãããã. Power Spectrum
åšæ³¢æ°è§£æ(Frequency-Domain)
ãã©ã®åšæ³¢æ°åž¯ãåªå¢ã«ãªã£ãŠããããã§çæ³ã®æ·±ããè³ªãæšå®. æéã«ã¯äŸåããªã.
PSDåšæ³¢æ°è§£æ(freq/PSD)
ãããå®çª. Power Spectral Density (PSD) plot
cross-spectral density (CSD)
ïŒã€ã®é»æ¥µã®PSDçžé¢.
æ£èŠåãã³ããã¯ãŒ
Relative Band Power, çžå¯Ÿãã¯ãŒ
åãã³ããã¯ãŒãå šäœãã¯ãŒã§å²ã£ãŠæ¯çåãå人差ãèšé²æ¡ä»¶ã®éããæããããã
ãªã絶察ãã¯ãŒã§ã¯ãªãæ£èŠåïŒ
<2025-12-10 Wed 08:45> 絶察ãã¯ãŒã¯ãã€ãºãå€ãããã®ã§ããŸã䜿ããªã. 黿¥µãæ±ã§å€å.
- 黿¥µã®æ¥è§Šæµæ 髪ã®ç¶æ ãæ±ãäœçœ®ã®ããããªãºã¬
- é ç®ã€ã³ããŒãã³ã¹ ç®èã也ç¥ç¶æ
- ããããã³ãã®ç· ãå ·å å§åã§æ¥è§Šãå€ãã
ãã³ãæ¯
Band Ratio/Power Ratio
- Ξ/β æ¯: éäž vs æ³šææ£æŒ«ã®ææš. æ³šææ¬ åŠãéäžç¶æ ã®ææš(ADHD)
- α/β æ¯: ãªã©ãã¯ã¹åºŠã®ç®å®
- α/Ξæ¯: ç æ°ãšéäžã®ãã©ã³ã¹. çæ³ææš.
- (α+Ξ)/β: ç²åŽåºŠ.
Theta/Beta Ratio(TBR)
TBR = Ξãã¯ãŒ / βãã¯ãŒ. ADHDããã¥ãŒããã£ãŒãããã¯ã§æåãªææš.
PAFè§£æ
ðããŒã¯ã¢ã«ãã¡/PAF. éäžåºŠã®åºŠåã.
æ¥ç¶æ§ã»åææ§(Connectivity)
ã³ããŒã¬ã³ã¹è§£æ
è³éšäœéã®æ³¢ã®åæåºŠ. åšæ³¢æ°ããšã«è³é åéã®çžé¢ã枬ãã
çæ³äžã¯åé éšãšåŸé éšã®Î±åæãé«ãŸããªã©ã®å ±åããã
äœçžåæïŒPhase Locking Value/PLVïŒ
è³æ³¢ãã£ã³ãã«éã®åæãåçŠ ã§ã®äžäœæãéäžãåæ ããå¯èœæ§.
ã¯ãã¹åšæ³¢æ°çµå(Ξâγ coupling)
Ξ波ãšÎ³æ³¢ã®çžäºäœçšãäœæ¥èšæ¶ãå çæ³šæå¶åŸ¡ã«é¢é£ã
Frontal alpha asymmetry/FAA
Frontal Alpha Asymmetry/FAA or Frontal Alpha Asymmetry Index/FAI
FAI=log(PowerAF8â)âlog(PowerAF7â)
ãã€ç æ£è ã¯ãå³åé åªäœïŒãã¬ãã£ãæ¹åïŒãã瀺ãåŸåããããšå ±åãããŠããã
- FAAæ£: å·Šåé åªäœïŒ=å³ããå·Šã¢ã«ãã¡ã匱ãïŒ â ã¢ãããŒãè¡åã»ããžãã£ãææ
- FAAè² : å³åé åªäœïŒ=å·Šããå³ã¢ã«ãã¡ã匱ãïŒ â åé¿è¡åã»ãã¬ãã£ãææ ïŒãã€ãäžå®ïŒ
α波ã¯è³ã®é掻æ§ããŒã«ãŒã ãé転ããã®ã
- α波ãå€ã = ãã®éšäœã¯äŒãã§ãã
- α波ãå°ãªã = ãã®éšäœã¯æŽ»åäž
ãã€ã®ãã€ãªããŒã«ãŒèª¬ã¯æªãã
ãææ ããã€ã®è³ææšããšããŠåºãç ç©¶ãããããåç¬ã§ã¯ä¿¡é Œæ§ã«ä¹ããããšãåãã£ãŠããŠããã
æ¯å¹ ã»å€åæ§
ãè³æŽ»åã®èŠåæ§ vs è€éæ§ããè©äŸ¡.
æ¯å¹ å€å (Amplitude Envelope Variability)
ãã³ãããšã®ç¬ææ¯å¹ ã®æºãããæ·±ãçæ³ã§ã¯å®å®åããã±ãŒã¹ãããã
EEGãšã³ããããŒææš
è³æ³¢æç³»åãã¹ãã¯ãã«ã®ãã©ã³ãã ãïŒå€æ§æ§ããæž¬ã.
- Shannon Entropy, Spectral EntropyïŒãã¯ãŒååžã®æ£ãã°ãå ·åïŒ
- Permutation Entropy, LempelâZiv ComplexityïŒæéãã¿ãŒã³ã®è€éãïŒ
- Sample Entropy: ãµã³ãã«ãšã³ããããŒ
- Multiscale Entropy: è¿äŒŒãšã³ããããŒ
- å€ãé«ã â 倿§ã§ã«ãªã¹çãäœã â èŠåçã§å調ã
- çæ³ç ç©¶: éäžçæ³ã§ã¯äœäžåŸåãéæŸåçæ³ã§ã¯äžæåŸåã
Spectral Entropy
- ãã¯ãŒã¹ãã¯ãã«å¯åºŠã確çååžãšããŠæ±ã
- åšæ³¢æ°æåã®ã倿§æ§ããæž¬å®
- é«ãå€ = åºåž¯åã«åæ£ãäœãå€ = ç¹å®åšæ³¢æ°åž¯ã«éäž
- ãµãã¿çæ³ïŒéäžåïŒ: äœäžåŸå
- ç¹å®ã®åšæ³¢æ°åž¯ïŒÎ±æ³¢ãΞ波ïŒã«éäžãããã
- ãŽã£ãããµããŒçæ³ïŒèгå¯åïŒ: ç¶æãŸãã¯åŸ®å¢
- åºç¯ãªåšæ³¢æ°æŽ»åãä¿ããã
è³æ³¢ã®éç·åœ¢æ§ã»è€éæ§ææš
- ãã©ã¯ã¿ã«æ¬¡å
ã1/fã¹ãã¯ãã«åŸã
- çæ³ç¶æ ã¯ãè³æ³¢ã®æºãããè€éæ§ããå€åãããšããç ç©¶ã
â ãå¿ãéãŸã£ãŠãããç¶æ ãšé¢é£ã¥ããããç ç©¶ãããã
å¿çš
- ç¡ç ã¹ããŒãžæšå®
- BCIåé¡
- ãã¥ãŒããã£ãŒãããã¯
- æ©æ¢°åŠç¿åé¡: ãçæ³ vs å®éãããçç·Žè vs åå¿è ããSVMãCNNã§åé¡
- ç¶æ æšå® HMMïŒé ããã«ã³ãã¢ãã«ïŒã§ãçæ³ç¶æ ã®é·ç§»ããã¢ãã«å
EEG Microstate
è³æ³¢å šäœã®é»äœååžïŒé ç®äžã®ããã°ã©ãã£ïŒããæ°åãçŸããªç§ã»ã©å®å®ããŠæç¶ããç¶æ ãã¿ãŒã³
ãããã®ç¶æ ã¯ãããã°ãè³ã®äžç¬ã®æèã¹ãããã·ã§ããããšãèšããè€æ°ã®ãã¿ãŒã³ïŒéåžž4ã7çš®é¡ãAãDãAãEãªã©ïŒãæéçã«åãæ¿ãããªããèªç¥æŽ»åãæ§æããŠããŸãã
è³å ã®ãããã¯ãŒã¯åæ(DMN/CEN).
å¯èŠå
ä¿¡å·æºæšå®
Tools
- EEGLab: MATLAB
MNE-Python
è³æ³¢è§£æã®ããã®Pythonã©ã€ãã©ãª
Open-source Python package for exploring, visualizing, and analyzing human neurophysiological data: MEG, EEG, sEEG, ECoG, NIRS, and more.
- PythonãçšããŠè³æ³¢ãè§£æãã -
- MNE-Python ã®äœ¿ãæ¹ éåæ³èµ·ã®è§£æ #eeg - Qiita
- Pythonã§è³æ³¢è§£æïŒPython MNEã®ãã¥ãŒããªã¢ã« #eeg - Qiita
- ååŠç | EEG-Analysis
PsyToolbox
èªç¥ç§åŠçšã®å®éšããŒã«äœæ.
ææããã.
jsPsy
Topics
è³æ³¢ãšè³è¡æµé
ãã¯ãã«ã«ããŒãïŒç ç©¶ã®ããã®è³æ³¢ã®åºç€ç¥è, ãã€ãºé€å»ã«æŽ»çš.
è³æ³¢ãªãŒãã³ããŒã¿
çæ³è§£æ
ç¡ç ç¡ç
- YASA: ç¡ç ã¹ããŒãžåæ, https://github.com/raphaelvallat/yasa
ðReferences
- ãã¯ãã«ã«ããŒãïŒæ°åŒãçšããªããè³æ³¢è§£æå ¥é
- ãŸããã | EEG-Analysis, åºç€ãããŸãšãŸã£ãŠããwiki. çŽ æŽããã.
deriba
- ãæ€èšŒãæ¯æ¥2æéçæ³ããããšè³ã¯ã©ããªãã®ã - YouTube, 1æ¥2æé以äžçæ³ããŠãã人ã®ããŒã¿ã»ããåæ. MATLAB/EEGLabã€ãã£ãŠã.
- fmã·ãŒã¿ãæç¢ºã«çŸãã.
- çéè ã¯ã¢ã«ãã¡æ³¢ã綺éºã«å šäœãæ¯é ããŠãã. çŽ äººã¯äœçžãã°ãã°ã.
- https://link.springer.com/article/10.1007/s00221-016-4811-5
- https://openneuro.org/datasets/ds001787/versions/1.1.1
- ãæ€èšŒãçŽ äººã2æéçæ³ãããšè³ã«äœãèµ·ããïŒ - YouTube, 40åãè¶ãããšåé èãåŸé èã§åŒ·ãã¢ã«ãã¡æ³¢ãæç¢ºã«ã§ã. åæïŒ
MOOCs
- NESC 3505 Neural Data Science | Official site for the course offered by the Department of Psychology & Neuroscience, Dalhousie University.
- è³æ³¢ä¿¡å·è§£æ 第1å 2023/9/26 - YouTube, ç°äžå®å
- Bandpower of an EEG signal, Pythonãã€ãã£ããã¥ãŒããªã¢ã«.
- Introduction to Neurohacking In R | Coursera
- PiEEG - YouTube
- Signal processing (Python) for Neuroscience Practical course | Udemy
- PiEEGã¯ã©ãºãã€ã®äœäŸ¡æ ŒEEG. ãããæ°ã«ãªã.
Data analysis
- Overview of MEG/EEG analysis with MNE-Python â MNE 1.10.2 documentation
- https://reybahl.medium.com/eeg-signal-analysis-with-python-fdd8b4cbd306
- https://github.com/ZitongLu1996/Python-EEG-Handbook
ðAnalyzing Neural Time Series Data - Mike X Cohen
éæ¿æžç±ã ã15000åâŠ
- Amazon | Analyzing Neural Time Series Data: Theory and Practice (Issues in Clinical and Cognitive Neuropsychology) | Cohen, Mike X | Diagnostic Imaging
- è³æ³¢è§£æã®åºç€ãŸãšãïœEmi Utagawaïœnote
- https://github.com/mikexcohen/AnalyzingNeuralTimeSeries, MATLABã ãã©Python translateããã.
Mike X Cohen
ããããåç»ã ããŠã.
- https://www.mikexcohen.com/#home
- Mike X Cohen - YouTube
- Mike X Cohen | Educator and writer | Udemy
- ããŒã¿ãµã€ãšã³ã¹ã®ããã®å®è·µç·åœ¢ä»£æ° [Book]â, olieryãããç·åœ¢ä»£æ°ã®æžç±.